Search results for " 53A30"

showing 3 items of 3 documents

Conformal invariance of the writhe of a knot

2008

We give a new proof of an old theorem by Banchoff and White 1975 that claims that the writhe of a knot is conformally invariant.

Mathematics - Differential GeometryPure mathematicsQuantitative Biology::BiomoleculesAlgebra and Number TheoryConformal mapGeometric Topology (math.GT)Mathematics::Geometric TopologyMathematics - Geometric TopologyDifferential Geometry (math.DG)Conformal symmetryFOS: Mathematics57M25 53A30Knot (mathematics)MathematicsWrithe
researchProduct

Darboux curves on surfaces I

2017

International audience; In 1872, G. Darboux defined a family of curves on surfaces of $\mathbb{R}^3$ which are preserved by the action of the Mobius group and share many properties with geodesics. Here, we characterize these curves under the view point of Lorentz geometry and prove that they are geodesics in a 3-dimensional sub-variety of a quadric $\Lambda^4$ contained in the 5-dimensional Lorentz space $\mathbb{R}^5_1$ naturally associated to the surface. We construct a new conformal object: the Darboux plane-field $\mathcal{D}$ and give a condition depending on the conformal principal curvatures of the surface which guarantees its integrability. We show that $\mathcal{D}$ is integrable w…

[ MATH ] Mathematics [math]GeodesicGeneral MathematicsDarboux frame02 engineering and technology01 natural sciencessymbols.namesakeMoving frame57R300202 electrical engineering electronic engineering information engineeringDarboux curves0101 mathematics[MATH]Mathematics [math]Möbius transformationMathematicsConformal geometryEuclidean spaceMSC: Primary 53A30 Secondary: 53C12 53C50 57R3053A3053C50010102 general mathematicsMathematical analysis53C12Ridge (differential geometry)Family of curvessymbolsSpace of spheres020201 artificial intelligence & image processingConformal geometry
researchProduct

Limiting Carleman weights and conformally transversally anisotropic manifolds

2020

We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, 3 3 -manifolds, and 4 4 -manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman weights, and show that there are only three basic such weights up to the action of the conformal group. In dimension three we show that if the manifold is not conformally flat, there could be one or two limiting Carleman weights. We also characterize the metrics that have more than one limiting Carleman weight. In dimension four we obtain a complete spectrum of examples according to the structure of the Weyl tensor. In particular, we construct unimodular Lie groups whose …

osittaisdifferentiaaliyhtälötComputer Science::Machine LearningApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysis35R30 53A30LimitingMathematics::Spectral TheoryComputer Science::Digital Libraries01 natural sciencesinversio-ongelmatdifferentiaaligeometria010101 applied mathematicsStatistics::Machine LearningMathematics - Analysis of PDEsFOS: MathematicsComputer Science::Mathematical Softwaremonistot0101 mathematicsAnisotropyAnalysis of PDEs (math.AP)MathematicsTransactions of the American Mathematical Society
researchProduct